Temi di esame a scelta del candidato

Tema n° 1
Il candidato descriva, attraverso una relazione di carattere generale, vari sistemi di conversione oggi in uso per la produzione di potenza meccanica, soffermandosi in modo particolare sulla descrizione della strumentazione per il rilevamento delle grandezze che interessano i flussi energetici.

Tema n° 2
Il candidato fornisca una relazione di carattere generale sulla problematica inerente le proprietà meccaniche dei materiali metallici. Il candidato illustri i metodi per il rilevamento delle proprietà meccaniche più importanti, la strumentazione necessaria al loro rilevamento, le normative specifiche da rispettare.

Tema n° 3
Il candidato descriva un processo industriale di rilievo del proprio settore, discutendo le condizioni operative e le apparecchiature che lo costituiscono.
1. Il candidato commenti con una relazione generale le fasi progettuali per la realizzazione di un circuito attivo al trasporto di calore da un generatore ad un utilizzatore. Il candidato commenti tutte le fasi che ritiene necessarie per realizzare del circuito considerandone le normative ed il collaudo.

2. Il candidato fornisca una relazione progettuale generale per la realizzazione di un collegamento meccanico fra due alberi coassiali (giunto). Il candidato dopo avere esaminato il problema ne indichi i criteri progettuali, le norme di riferimento, le verifiche e il collaudo.

3. Per produrre la formaldeide, una opportuna miscela gassosa di metanolo e aria, viene fatta passare su un catalizzatore la cui temperatura è di 973 K. Si può ritenere che avvengano solo le seguenti reazioni:

 \[\text{CH}_3\text{OH} + \frac{1}{2}\text{O}_2 \rightarrow \text{HCHO} + \text{H}_2 \text{O} \]

 \[\text{CH}_3\text{OH} \rightarrow \text{HCHO} + \text{H}_2 \]

L’ossigeno viene alimentato in rapporto stochiometrico con il metanolo consumato nella prima reazione e la corrente in uscita dal reattore non contiene metanolo. Il metanolo viene alimentato ad una temperatura di 100°C mentre l’aria si trova a 60°C. Nell’ipotesi che al reattore venga fornita una potenza termica di 30000 cal/h si chiede di calcolare il valore del rapporto molarie metanolo/aria delle correnti di entrata necessario per mantenere la temperatura di 973 K.
Il sistema di sollevamento, il cui schema è illustrato in figura, è composto essenzialmente da un motore elettrico M, da due ruote dentate 1 e 2, da un tamburo avvolgicavo T che solleva un peso P.
L'albero al cui il tamburo è collegato, è supportato in A e B.
Il peso P è pari a 400 kg.
Nelle ipotesi che i supporti A e B si possano assimilare a due appoggi semplici, che la ruota 2 abbia uno sbalzo trascurabile rispetto al supporto B e che le mase rotanti siano trascurabili, si determinino:

a) le reazioni vincolari in A e B;
b) la coppia torcente e il momento flettente max sull'albero;
c) la potenza del motore elettrico nell'ipotesi che la sua velocità di rotazione sia di 1450 rpm;
d) il diametro dell'albero A-B.

Diametro tamburo D=300 mm
Diametro primitivo ruota 1 D1=75 mm
Diametro primitivo ruota 2 D2=360 mm
Si deve pompare acqua da un corso d’acqua in una vasca posta a 40 metri più in alto della presa. La quantità di acqua richiesta è di 35 litri al secondo. La lunghezza della tubazione è di 120 metri.

Il candidato risolverà il problema scegliendo il diametro della tubazione che ritiene adatto. Si impieghino una delle 5 pompe le cui caratteristiche funzionali sono riportate in allegato. Il candidato sceglia il tipo di tubazione che ritiene più idoneo (in PVC, di acciaio, di ghisa, ecc.). Infine valuti la potenza idraulica fornita al fluido ed il rendimento di pompaggio.

In allegato sono riportati alcuni dati riguardanti tubi in polietilene che possono o no essere consultati.

(viscosità dell’acqua a 20°C $\mu = 1 \times 10^{-4} \text{ N} \cdot \text{s} / \text{m}^2$).
Curve Caratteristiche Pompa alla velocità di rotazione di 2900 rpm.
<table>
<thead>
<tr>
<th>Ø est.</th>
<th>20</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>63</th>
<th>75</th>
<th>90</th>
<th>100</th>
<th>125</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>225</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.18</td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>v</td>
<td>1.89</td>
<td>1.25</td>
<td>0.77</td>
<td>0.68</td>
<td>0.59</td>
<td>0.51</td>
<td>0.43</td>
<td>0.35</td>
<td>0.27</td>
<td>0.20</td>
<td>0.14</td>
<td>0.10</td>
<td>0.07</td>
<td>0.05</td>
</tr>
<tr>
<td>Ø est.</td>
<td>50</td>
<td>63</td>
<td>75</td>
<td>90</td>
<td>100</td>
<td>125</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.23</td>
<td>0.27</td>
<td>0.31</td>
<td>0.35</td>
<td>0.38</td>
<td>0.41</td>
<td>0.44</td>
<td>0.47</td>
<td>0.50</td>
<td>0.53</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>1.05</td>
<td>1.15</td>
<td>1.25</td>
<td>1.35</td>
<td>1.45</td>
<td>1.55</td>
<td>1.65</td>
<td>1.75</td>
<td>1.85</td>
<td>1.95</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø est.</td>
<td>100</td>
<td>125</td>
<td>140</td>
<td>160</td>
<td>180</td>
<td>200</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1.31</td>
<td>1.39</td>
<td>1.47</td>
<td>1.55</td>
<td>1.62</td>
<td>1.70</td>
<td>1.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>2.40</td>
<td>2.52</td>
<td>2.64</td>
<td>2.76</td>
<td>2.88</td>
<td>3.00</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabella predette di carico

Tubi Polietilene PE 100 - PFA 16

<table>
<thead>
<tr>
<th>Q = Portata litri / sec</th>
<th>V = Velocità m / sec</th>
<th>J = Portata di carico = M / km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø est.</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>V</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>J</td>
<td>171.04</td>
<td>157.30</td>
</tr>
</tbody>
</table>

Tabella ricavata con la formula di Hazen-Williams

- 27.9, 51.9
- 35.6, 59.6
- 45.3, 73.3
- 54.9, 88.9
- 64.6, 103.6
- 74.3, 118.6
- 84.0, 133.6
- 93.7, 148.6
- 103.4, 163.6
- 113.1, 178.6
- 122.8, 193.6
- 132.5, 208.6
- 142.2, 223.6
- 151.9, 238.6
- 161.6, 253.6
- 171.3, 268.6
- 181.0, 283.6
- 190.7, 298.6
- 200.4, 313.6
- 210.1, 328.6
- 220.8, 343.6
- 230.5, 358.6
- 240.2, 373.6
- 250.0, 388.6
- 259.7, 403.6
- 269.4, 418.6
- 279.1, 433.6
- 288.8, 448.6
- 298.5, 463.6
- 308.2, 478.6
- 317.9, 493.6
- 327.6, 508.6
- 337.3, 523.6
- 347.0, 538.6
- 356.7, 553.6
- 366.4, 568.6
- 376.1, 583.6
- 385.8, 598.6
- 395.5, 613.6
- 405.2, 628.6
- 414.9, 643.6
- 424.6, 658.6
- 434.3, 673.6
- 444.0, 688.6
- 453.7, 703.6
- 463.4, 718.6
- 473.1, 733.6
- 482.8, 748.6
- 492.5, 763.6
- 502.2, 778.6
- 511.9, 793.6
- 521.6, 808.6
- 531.3, 823.6
- 540.9, 838.6
- 550.6, 853.6
- 560.3, 868.6
- 569.9, 883.6
- 579.6, 898.6
- 589.3, 913.6
- 598.9, 928.6
- 608.6, 943.6
- 618.3, 958.6
- 627.9, 973.6
- 637.6, 988.6
- 647.3, 1003.6
- 656.9, 1018.6
- 666.6, 1033.6
- 676.3, 1048.6
- 685.9, 1063.6
- 695.6, 1078.6
- 705.3, 1093.6
- 714.9, 1108.6
- 724.6, 1123.6
- 734.2, 1138.6
- 743.9, 1153.6
- 753.6, 1168.6
- 763.2, 1183.6
- 772.9, 1198.6
- 782.5, 1213.6
- 792.2, 1228.6
- 801.8, 1243.6
- 811.5, 1258.6
- 821.1, 1273.6
- 830.8, 1288.6
- 840.4, 1303.6
- 849.9, 1318.6
- 858.5, 1333.6
- 867.0, 1348.6
- 874.9, 1363.6
- 882.3, 1378.6
- 889.8, 1392.6
- 896.3, 1406.6
- 902.7, 1420.6
- 908.2, 1434.6
- 913.6, 1448.6
- 918.0, 1462.6
- 922.4, 1476.6
- 926.8, 1490.6
- 931.2, 1504.6
- 935.5, 1518.6
- 939.9, 1532.6
- 944.2, 1546.6
- 948.5, 1560.6
- 952.9, 1574.6
- 957.2, 1588.6
- 961.5, 1602.6
- 965.8, 1616.6
- 970.1, 1629.6
- 974.4, 1642.6
- 978.7, 1655.6
- 980.0, 1659.6

L'immagine mostra la pagina di un documento, ma non è fornita un'area naturale di testo. Tuttavia, è possibile ipotizzare che il documento potrebbe contenere informazioni tecniche o statistiche, basandosi sui formati di testo e le evidenze di analisi dei dati. L'inserimento di formule o diagrammi potrebbe indicare un'area di studio o ricerca. Senza il contenuto specifico, è impossibile determinare con precisione il contesto o il contenuto del documento.
Diagramma di Moody: curve $\lambda = f(R_e, \varepsilon/D)$ ottenute dalla formula di Colebrook con diversi valori costanti della scabrezza relativa ε/D.

Tabella 13.2. - Coefficienti di scabrezza per le tubazioni.

<table>
<thead>
<tr>
<th>Tipo di condotta</th>
<th>Scabrezza assunta ε (mm)</th>
<th>Reazione R_e (m4)</th>
<th>Esterno m_e (m3)</th>
<th>Geoelettrico m_g (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Tubazioni termicamente lisce (vettore-ottone o rame tratto, resina)</td>
<td>0.005</td>
<td><0.04</td>
<td><0.13</td>
<td>120</td>
</tr>
<tr>
<td>2 - Tubazioni in acciaio</td>
<td>0.10-0.15</td>
<td><0.13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>a) rivestimenti degradabili nel tempo</td>
<td>0.10-0.15</td>
<td><0.13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>tubi new, verniciati per centrifugazione</td>
<td>0.10-0.15</td>
<td><0.13</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>b) rivestimenti non degradabili</td>
<td>0.3-0.6</td>
<td>0.16</td>
<td>0.20-0.25</td>
<td>75-80</td>
</tr>
<tr>
<td>cemento applicato per centrifugazione</td>
<td>1.0-1.5</td>
<td>0.20</td>
<td>0.30-0.35</td>
<td>75-70</td>
</tr>
<tr>
<td>3 - Tubazioni in lenta saldata</td>
<td>0.2-0.3</td>
<td>0.10</td>
<td>0.15</td>
<td>90</td>
</tr>
<tr>
<td>in liquido condizionato</td>
<td>0.4-0.5</td>
<td>0.15</td>
<td>0.20-0.25</td>
<td>75-75</td>
</tr>
<tr>
<td>in servizio corrosivo, con incrostazioni</td>
<td>0.4-0.5</td>
<td>0.15</td>
<td>0.20-0.25</td>
<td>75-75</td>
</tr>
<tr>
<td>4 - Tubazioni in lenta chiodata</td>
<td>0.6-0.8</td>
<td>0.18</td>
<td>0.30</td>
<td>90-110</td>
</tr>
<tr>
<td>5 - Tubazioni in ghisa</td>
<td>0.6-0.7</td>
<td>0.15</td>
<td>0.20</td>
<td>90-110</td>
</tr>
<tr>
<td>a) rivestimenti degradabili nel tempo</td>
<td>0.6-0.7</td>
<td>0.15</td>
<td>0.20</td>
<td>90-110</td>
</tr>
<tr>
<td>b) rivestimenti non degradabili</td>
<td>0.6-0.7</td>
<td>0.15</td>
<td>0.20</td>
<td>90-110</td>
</tr>
<tr>
<td>con incrostazioni</td>
<td>0.6-0.7</td>
<td>0.15</td>
<td>0.20</td>
<td>90-110</td>
</tr>
</tbody>
</table>

Note:
- ε è la scabrezza relativa della superficie.
- R_e è il numero di Reynolds.
- m_e e m_g sono i coefficienti di scabrezza per il flusso esterno e geoelettrico, rispettivamente.